Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under flow conditions.
نویسندگان
چکیده
The metalloprotease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin motif) converts the hyperreactive unusually large (UL) forms of von Willebrand factor (VWF) that are newly released from endothelial cells into less active plasma forms by cleaving a peptide bond in the VWF A2 domain. Familial or acquired deficiency of this metalloprotease is associated with thrombotic thrombocytopenic purpura (TTP). ADAMTS13 belongs to the ADAMTS metalloprotease family, but, unlike other members, it also contains 2 C-terminal CUB domains (complement component Clr/Cls, Uegf, and bone morphogenic protein 1). Mutations in the CUB region have been found in congenital TTP, but deletion of the region did not impair enzyme activity in conventional in vitro assays. We investigated the functions of the CUB domain in ADAMTS13 activity under flow conditions. We found that recombinant CUB-1 and CUB-1+2 polypeptides and synthetic peptides derived from CUB-1 partially blocked the cleavage of ULVWF by ADAMTS13 on the surface of endothelial cells under flow. The polypeptide bound immobilized and soluble forms of ULVWF, and blocked the adhesion of ADAMTS13-coated beads to immobilized ULVWF under flow. These results suggest that the CUB-1 domain may serve as the docking site for ADAMTS13 to bind ULVWF under flow, a critical step to initiate ULVWF proteolysis.
منابع مشابه
Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow.
ADAMTS13 cleaves ultralarge and hyperreactive von Willebrand factor (ULVWF) freshly released from activated endothelial cells to smaller and less active forms. This process may be affected by the amount of ULVWF released and the processing capacity of ADAMTS13, contributing to the development of thrombotic diseases. We examined the effects of inflammatory cytokines on the release and cleavage o...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Effects of inflammatory cytokines on the release and cleavage of the endothelial cell–derived ultralarge von Willebrand factor multimers under flow
ADAMTS13 cleaves ultralarge and hyperreactive von Willebrand factor (ULVWF) freshly released from activated endothelial cells to smaller and less active forms. This process may be affected by the amount of ULVWF released and the processing capacity of ADAMTS13, contributing to the development of thrombotic diseases. We examined the effects of inflammatory cytokines on the release and cleavage o...
متن کاملP-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (ADisintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that ...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (A Disintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that...
متن کاملCarboxyl terminus of ADAMTS13 directly inhibits platelet aggregation and ultra large von Willebrand factor string formation under flow in a free-thiol-dependent manner.
OBJECTIVE ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type 1 repeats, 13) cleaves von Willebrand factor (VWF), thereby inhibiting thrombus formation. Proteolytic cleavage relies on the amino-terminal (MDTCS) domains, but the role of the more distal carboxyl-terminal domains of ADAMTS13 is not fully understood. A previous study demonstrated the presence of multiple surface-ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 106 13 شماره
صفحات -
تاریخ انتشار 2005